Improving Sara’s quality of life: A 3D printed prosthetic hand

Improving Sara’s quality of life: A 3D printed prosthetic hand

When we think about quality of life, we imagine us sunbathing on a tropical beach or just taking a breathe in a relaxed atmosphere on the other side of the world. We usually think big. However, sometimes small things can absolutely change someone’s quality of life.

And this is the case of Sara.

BCN3D Sigma_Prosthetic_3D_Domotek_Enabling the future_RTVE

Sara and her classmates observing the final prosthetic hand (RTVE, 2017).

Sara is a girl from Spain who was born with a malformation on her right hand which doesn’t allow her to use it properly. In March this year, Spanish television program “El árbol de los deseos” from RTVE, visited Sara at her school with an important gift for her. A fully 3D printed prosthetic hand.

A few months earlier, RTVE contacted Koldo, manager of DomoTek, and asked him to develop a fully 3D printed prosthetic hand for Sara. Domotek is a company that offers 3D printing machines and services and is really interested in social changing projects. Furthermore, Domotek is part of an association called “Enabling the Future“, exclusively dedicated to make open source 3D printed prosthetic hands.

BCN3D Sigma_Prosthetic_3D_Domotek_Enabling the future_RTVE_5

Sara’s conceptual idea and digital model of her prosthetic hand (Domotek, 2017).

Koldo managed the whole project and thanks to the BCN3D Sigma and the “Enabling the future” association, the project was a great success. The BCN3D Sigma, thanks to its dual extruder system that can print with two colours or materials at the same time, was able to print the entire piece in the exact colours that Sara wanted. So not only solving the problem but also improving it as well.

BCN3D Sigma_Prosthetic_3D_Domotek_Enabling the future_RTVE_4

Finished double colour 3D printed proshtetic hand on the BCN3D Sigma (Domotek, 2017).

Nowadays Sara is enjoying her prosthetic 3D printed hand as a little-big change in her life. This has been possible thanks to RTVE, DomoTek and “Enabling the future”, a non-profit association that is improving someone’s quality of life everyday thanks to its Open Source philosophy.

So is there where society has to put its energies, understanding that disruptive technologies like 3D printing can help to improve our lives. Understand from the oldest to the youngest, that the constant development of 3D printing technology it’s just the beginning of a new way to live better.

BCN3D Sigma_Prosthetic_3D_Domotek_Enabling the future_RTVE_6

Sara using her prosthetic hand in the park (Domotek, 2017).

BCN3D MOVEO – A fully Open Source 3D printed robot arm

BCN3D MOVEO – A fully Open Source 3D printed robot arm

IMG_7116_web

BCN3D Technologies keeps taking important steps in order to achieve his goal of bringing the digital manufacturing technology to everyone. In this occasion we are presenting the BCN3D Moveo, a robotic arm design from scratch and developed by our engineers in collaboration with the Departament d’Ensenyament from the Generalitat de Catalunya. Its structure is fully printed using additive manufacturing technologies and its electronics are controlled by the software Arduino.

Moveo, fully functional nowadays, has been born, as all the BCN3D Technologies products, with an open and educational wish.

Why BCN3D Moveo

One of the Departament d’Ensenyament worries is the high price of the materials the grade students must use on their internships. Holding that in mind, an Open Source robotic arm, adaptable by the students and low cost reproducible could take several educational itineraries: mechanical design, automatism, industrial programing, etc.

Thus, the BCN3D Moveo should allow the educational centers to enjoy a modifiable and easily accessible for the students, at a price far lower than the usual industrial equipment they used to have to acquire, with enough output for training purposes.

As a Fundació CIM area, BCN3D Technologies shares its educational vocation. That is the reason why when the Departament d’Ensenyament contacted us in order to suggest and offer this project a year ago we didn’t hesitate on taking that opportunity.

Once we had the robotic arm designed and manufactured we started the last phase of the project, which consisted on an assembling and fine tuning workshop for 15 institutes around Catalonia, which took place in the BCN3D Technologies.

These institutes already have the BCN3D Moveo in their classrooms and workshops, and will have to present an internship program that proves their knowledge about the arm during September.

 

IMG_0015_2

 

Open Source Technology: Github

As we have done with all our developed produtcs, the BCN3D Moveo files will be available for everyone. Thanks to the platform Github, a website where users around the world share their designs, anyone will be able to obtain all the necessary information in order to assemble his own BCN3D Moveo at home.

Unlike the other BCN3D products, the Moveo won’t be commercialized. The project has been born and developed in order to make a move for the community progress starting from the Departament d’Ensenyament idea.

Nevertheless, BCN3D will fee all the Moveo know how on our Github account, as we have been doing with all the BCN3D Technologies products. Thus, the users will be able to find the bill of material (BOM), where all the needed components for the assembling of the arm come detailed, as the CAD designs, so anyone will be able to modify the BCN3D Moveo design as they wish.

Furthermore, the Github users will find the STL files for the structure printing and the assembling, fine tuning and firmware upload manuals, which will be available both in English and Spanish.

Thanks to this project motivated by the Departament d’Ensenyament and developed by BCN3D Technologies everyone will be able to fabricate their own robotic arm at home, no highly technical knowledge needed. Therefore, we encourage you to fabricate the BCN3D Moveo and share the results on the social networks using the hashtag #BCN3DMoveo.

Realistic Mockup of a Housing Estate

Realistic Mockup of a Housing Estate

120 x 150 cm in size, amazing detail, made cheaper and faster than traditional methods.

Challenge

Creating a good architectural mock-up is no mean feat because it requires perfect reproduction of details, fine aesthetics and high quality of craftsmanship. The end result must impress potential investors and developers. The challenge was to create a highly detailed, large-scale architectural model of a modern housing estate in 3D printing technology.

Solution

Get Models Now decided to use a ZMorph multitool 3D printer to print all of the infrastructures of the mockup, and use traditional mockup making methods and materials only for finishing. The buildings were divided into segments and put together after printing. The area around the residential buildings was fenced and covered with green grass, on which a playground was placed. The remaining space was developed with trees, shrubs, parking spaces and lamps. Additionally, the mock-up has realistically made lighting inside and outside the buildings.

Result

The end result is a 120 x 150 cm realistic mockup of a housing estate made with the utmost accuracy and attention to detail, and of course a ZMorph multitool 3D printer. Creating an architectural mockup in 3D printing technology has nothing but superlatives – it’s much cheaper, faster and more accurate than traditional methods. Designing and 3D printing is an excellent tool for modern architects.

Realistic 3D printed mockup 5

Realistic 3D printed mockup 6

 

 

 

Realistic 3D printed mockup 3

Fully Functional Drone

Fully Functional Drone

Made by the worlds most versatile and practical 3D printer

Challenge

3D printers gained the attention of a broader audience in the second decade of the XXI century with a few open source project which offered affordable additive manufacturing machines, simultaneously sparking a market for future 3D printer manufacturers. Since that time 3D printers evolved, even surpassing the function of 3D printing. Nowadays, thanks to multitool 3D printers like the ZMorph VX, users can create complex, multi-material projects, including a PCB board. With this use case, we’d like to show you how advanced are multitool 3D printers today. The project you’re about to see wouldn’t be possible with a typical single-purpose 3D printer.

Solution

In order to make a fully custom drone we used all of ZMorph VX fabrication methods. 3D printing with ABS was used for the electronics casing, propeller guards, and landing gear. From a 3D printing toolhead we switched to Laser PRO toolhead to etch a PCB design on a PCB copper laminate plate. Next, a CNC PRO toolhead was used to cut the frame from lightweight and sturdy Dibond composite, and also to cut out the form of the PCB from the previously etched copper laminate. Then we took some standard electronics to make the drone “alive”, like sensors, main processor, battery, radio control remote. Finally, we made final post processing touches by painting some elements of the drone.

Result

We combined all three ZMorph fabrication methods: 3D printing, CNC, and laser. We used some ABS filament, Dibond, PCB laminates and some electronics, all worth around $100. This multitool 3D printer allowed us to make an awesome looking and functional drone within a desktop workspace. The same process can be used for making prototypes, showcase models and even low-volume production – proportional to the amount of owned 3D printers. A drone is only an example because the range of ZMorph’s possibilities is really vast – for more check out our catalog at zmorph3d.com/catalog. 3D printers came a long way!

ZMorph VX drone 1

ZMorph VX drone 4

ZMorph VX drone 12

ZMorph VX drone, 14